AI Explorables

Big ideas in machine learning, simply explained

The rapidly increasing usage of machine learning raises complicated questions: How can we tell if models are fair? Why do models make the predictions that they do? What are the privacy implications of feeding enormous amounts of data into models?

This ongoing series of interactive, formula-free essays will walk you through these important concepts.

By asking language models to fill in the blank, we can probe their understanding of the world.

Machine learning models use large amounts of data, some of which can be sensitive. If they’re not trained correctly, sometimes that data is inadvertently revealed.

Search results that reflect historic inequities can amplify stereotypes and perpetuate under-representation. Carefully measuring diversity in data sets can help.

The availability of giant datasets and faster computers is making it harder to collect and study private information without inadvertently violating people’s privacy.

There are multiple ways to measure accuracy. No matter how we build our model, accuracy across these measures will vary when applied to different groups of people.

Models trained on real-world data can encode real-world bias. Hiding information about protected classes doesn’t always fix things — sometimes it can even hurt.